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A new third-order solution for bichromatic bi-directional water waves in finite depth
is presented. Earlier derivations of steady bichromatic wave theories have been
restricted to second-order in finite depth and third-order in infinite depth, while
third-order theories in finite depth have been limited to the case of monochromatic
short-crested waves. This work generalizes these earlier works. The solution includes
explicit expressions for the surface elevation, the amplitude dispersion and the vertical
variation of the velocity potential, and it incorporates the effect of an ambient
current with the option of specifying zero net volume flux. The nonlinear dispersion
relation is generalized to account for many interacting wave components with different
frequencies and amplitudes, and it is verified against classical expressions from the
literature. Limitations and problems with these classical expressions are identified.
Next, third-order resonance curves for finite-amplitude carrier waves and their three-
dimensional perturbations are calculated. The influence of nonlinearity on these curves
is demonstrated and a comparison is made with the location of dominant class I and
class IT wave instabilities determined by classical stability analyses. Finally, third-order
resonance curves for the interaction of nonlinear waves and an undular sea bottom
are calculated. On the basis of these curves, the previously observed downshift/upshift
of reflected /transmitted class III Bragg scatter is, for the first time, explained.

1. Introduction

Monochromatic short-crested water waves occur in connection with, for example,
oblique reflection from seawalls and diffraction around detached breakwaters. As a
first linear approximation, they can be obtained by the superposition of two oblique
travelling wavetrains of equal frequency and amplitude. A second-order solution was
derived by Fuchs (1952), whereas Chappelear (1961) extended it to third-order. Hsu,
Tsuchiya & Silvester (1979) rederived the third-order solution with a different choice
of expansion parameter. Since then the literature on this subject has been extensive and
we shall only mention a few of the important contributions: Roberts (1983) developed
a high-order perturbation method for short-crested deep-water waves, while Roberts &
Peregrine (1983) treated the important limit of grazing angles, where the short-crested
deep-water waves become long-crested. Numerical computations of highly nonlinear
short-crested waves were presented by Roberts & Schwarts (1983) and Bryant (1985)
using collocation and Fourier transforms, respectively. Experimental investigations
have been presented by, for example, Hammack, Scheffner & Segur (1989), Hammack,
Henderson & Segur (2005) and Kimmoun, Ioualalen & Kharif (1999).

The theoretical description of irregular multi-directional waves is much less
developed, this is most probably due to the increased complexity. Sharma & Dean
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(1981) were the first to derive a second-order solution for bichromatic bi-directional
water waves, and this solution is the kernel of second-order irregular wave theory
which is obtained by double summation over pairs over interacting bichromatic waves.
Inspired by this work, a large number of papers have concentrated on the development
of second-order wavemaker theory for unidirectional and multi-directional irregular
waves (see e.g. Schiffer, 1996; Schiffer & Steenberg, 2003). However, beyond second-
order, theoretical descriptions of irregular waves are rare.

Longuet-Higgins & Phillips (1962) were the first to consider the problem of two
deep-water gravity waves travelling at an angle to each other, and they derived a
third-order expression for the resulting phase velocity modification due to mutual
interaction. A misprint in their general expression was later corrected by Hogan,
Gruman & Stiassnie (1988), who generalized their work to bi-directional gravity—
capillary waves in deep water. A third-order solution for the sum of two and three
collinear deep-water wavetrains was attempted by Pierson (1993), but his dispersion
relation was based on intuition rather than on consistent perturbation principles and
his results are incorrect. Zhang & Chen (1999) derived a third-order solution for
the interaction of three collinear deep-water wave components. This solution forms
the kernel of third-order irregular collinear wave theory, which is obtained by triple
summation over triplets of interacting waves. Unfortunately, their theory is limited
in practice by the assumption that all wave components can be approximated by
infinite-depth expressions, which means that not only the primary waves but also
their interactions (involving sum and difference frequencies) take place in infinite
depth. We shall discuss this limitation in §4.2.

In the present work, we derive a third-order perturbation solution for bichromatic
bi-directional water waves in finite depth. The solution includes explicit expressions
for the surface elevation, the amplitude dispersion and the vertical variation of the
velocity potential, while the effect of an ambient current is also taken into account,
with the option of specifying zero net volume flux. The solution is an extension
of Sharma & Dean (1981) from second order to third order, it is an extension of
Hsu et al. (1979) from monochromatic to bichromatic short-crested waves, and it is
an extension of Zhang & Chen (1999) from collinear interactions in deep water to
directional interactions in finite depth.

We do acknowledge, that the Zakharov formulation (e.g. as given by Zakharov
1968, 1999; Stiassnie & Shemer 1984; Krasitskii 1994), in principle, allows us to
obtain third-order expressions for steady bichromatic bi-directional waves. The direct
outcome of such an evaluation is the surface elevation and the velocity potential at
the free surface. However, to establish the velocity field, we must invoke successive
approximations where the relationship between the potential at the free surface and
at the still-water level is inverted. Zhang & Chen (1999) made this evaluation for
bichromatic waves in infinite depth (in a single horizontal dimension), but so far,
generalized expressions valid in finite depth have not been established.

We also acknowledge that expressions for the nonlinear dispersion relation,
involving several interacting waves in finite depth, have previously been given in
the framework of the Zakharov kernel function T(K, kj, k3, k4), for example, by
Stiassnie & Shemer (1984) and Agnon (1993). This kernel function must be evaluated
for pair-wise identical wavenumber vectors, i.e. T, = T(Ky, Kz, Ky + 81, K, +65) and for
identical wavenumber vectors Ty =T (k; + 8, kK + 8>, Ky + 83, K; + 84), where 6§, for
n=1,2, 3,4 denote perturbation vectors approaching zero during the limiting process.
In infinite depth, this limiting process is straightforward and explicit expressions can
be found (see e.g. Hogan et al. 1988 & Zakharov 1999). However, in finite depth,



Third-order theory for bichromatic bi-directional water waves 371

it turns out that the Zakharov kernel function does not have a unique limit, and
that the limit depends on the direction of the perturbation vectors §,. So far, only
Janssen & Onorato (2005) have addressed this problem, and only for the case of
monochromatic unidirectional waves in finite depth. The new theory provided in this
paper may serve as a reference for future work on the extension and application of
the Zakharov formulations to finite water depth.

The present paper is organized in the following way. First, the governing equations
and the perturbation method are defined in §2. Secondly, the third-order solution for
bichromatic bi-directional waves in finite depth is derived in § 3, which also includes a
subsection on the identification and removal of singularities and a simple application
of the theory. Thirdly, a discussion of the nonlinear dispersion relation is given in §4,
which includes comparisons with the infinite-depth bichromatic solutions by Hogan
et al. (1988) and Zhang & Chen (1999), the finite-depth bichromatic solution by Agnon
(1993), the finite-depth monochromatic short-crested solution by Hsu et al. (1979)
and the infinite-depth monochromatic short-crested hig-order solution by Roberts
(1983). In §5, we compute third-order resonance curves for unidirectional carrier
waves and their three-dimensional perturbation satellites. These curves are compared
to the location of the dominant class I and class II wave instabilities determined by
the numerical method of McLean (1982). In § 6, we compute the third-order resonance
curves for class III Bragg scattering, and the curves are compared to numerical results
obtained by Liu & Yue (1998) and Madsen, Fuhrman & Wang (2006). Concluding
remarks are given in §7, with some additional results provided in the Appendix.

2. The governing equations and the perturbation method
2.1. Equations for fully nonlinear water waves

We consider the irrotational flow of an incompressible inviscid fluid with a free
surface and a horizontal bottom, and adopt a Cartesian coordinate system with the
x-axis and the y-axis located on the mean water plane (MWP) and with the z-axis
pointing vertically upwards. The fluid domain is bounded by the horizontal sea bed
at z=—h and by the free surface z=rn(x, y, t), and the irrotationality of the flow is
expressed through the introduction of the velocity potential @ defined by

foRe P 0P
ulx,y,z,t) =——, vlx,y,z,1) = —, wx,y,z,1)=——,
ox ay 9z
where u,v and w are the components of the particle velocity in the x,y and z
directions, respectively. Now, the governing equations for the fully nonlinear wave
problem consist of two linear equations (the Laplace equation and the kinematic
bottom condition)
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We introduce the following variables defined directly on the free surface:

~ o - 0P
”E”(X,y’n,t)5<a) ’ UEU(X’)’J?J)E<8> 5 (5)
X z=n y z=n
~ D
w=w(x,y,nt)= <8(b> , Y= <8> ; (6)
9z ) ., an ) _,
by which the nonlinear surface equations (3) and (4) can be reformulated to
an - 877
— — =0, 7
o Wt a L+ dy ™
W+ gn+ 1@ + 7+ w?) =0, (8)

2.2. The perturbation method combined with Taylor series expansions

In order to derive analytical solutions to the governing equations, we adopt the
classical perturbation method, which assumes that some parameter (¢) naturally
appearing in the equations, in our case the nonlinearity, is small. Often this analysis
is performed in dimensionless variables, in which case ¢ represents a given physical
quantity such as the wavenumber multiplied by the wave amplitude (ka) or the
wave amplitude divided by the water depth (a/h). We prefer, however, to perform the
analysis in dimensional variables, in which case ¢ has no physical meaning, but merely
appears as a marker convenient for collecting terms of various orders of magnitude.
Once the different solutions have been obtained, & will be ignored.

An important part of the perturbation method is to express the velocity variables
at the free surface in terms of Taylor series expansions from the mean water datum
z=0. Including the first three terms in this expansion, we obtain

E:(aafJ“"aa;azJ““aii +> . o
St )
P~ (Gt an ) "

3. New solution for bichromatic bi-directional waves
3.1. First-order expressions
As a starting point for the perturbation method, we consider a first-order bi-directional
bichromatic progressive wave group made up of the two frequencies w, and w,,. The
corresponding wavenumber vectors are defined by Kk, = (k. kuy) and K, = (kyux, kiny),
and we express the first-order wave solutions by
n'Y = ¢ (a, cos b, + b, sin6,) + &(a,, cosb,, + b,, sin6,,), (13)
@®V = U -x +¢F, coshk,(z + h) (a, sin6, — b, cosb,)
+¢F,, coshk,(z + h)a, siné,, — b,, cosb,,), (14)
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where U is an ambient current vector (constant in time and space), X = (x, y) and
the phase functions are given by

On = wpt — knyxX — kiyy, (15)
em = Wyl — kmx-x - km}y (16)

For later use we introduce the amplitudes

W= VETE, o= AT, )

By inserting (14) into the Laplace equation (1), we obtain

ko = Kl = K2 K2, ko = K| = (K2, + K2, (18)

nx ny’

while the kinematic bottom condition (2) is automatically satisfied.

The remaining problem is to consider the nonlinear surface equations (7) and (8).
We insert (13) and (14) into (9)—(12), which again are substituted into (7) and (8).
Next, we collect terms of order O(e) and obtain two independent homogeneous
equations. These are satisfied by the linear dispersion relations including a Doppler
shift from the ambient current

w, =K, U+ wy,, o, =/ gk,tanhhk,, (19)
Wy = km ‘U + Wim, Wim = \/ Km tanh hicy, (20)

—Wi1n —Wim

= F,=—— 21
K, sinh hk,,’ " Kk, sinh hk,, 1)

and by

n

3.2. Second-order solution

The second-order solution for progressive bi-directional bichromatic waves was first
given by Sharma & Dean (1981). Their solution is rederived in this section as an
intermediate step towards the new third-order solution given in §3.3.

In the derivation of the second-order surface elevation and the velocity potential,
it turns out to be convenient to start with the following pre-assessment. First, we
calculate

(n'")? = £X(A;, cos(6, — 6,) + By, sin(6, — 6,,))

S| =

+ %A cos(6, + 6,) + B, sin(8, +6,,))

nm

+ gz(Az,1 €08 260, + By, sin 26, + A,,, cos 26,, + By, sin26,,),

where the second-order amplitudes read

1 1

A;Jl_rm = ﬁ(anam + bnbm), B;_rm = E(ambn + anbm), (22)
1, , ) 1

A2n = %(Cln - bn), By, = Zanbna (23)

with equivalent expressions for A,, and B,,. Notice that the contributions from
the sum/difference frequencies are found by using the upper/lower signs in (22).
This simple calculation is relevant, because the governing equations involve quadratic
nonlinearities, and it defines the form (but not the magnitude) of the second-order
surface elevation. Now having the form of n®), we can also establish the form (but
again not the magnitude) of the second-order velocity potential, simply by using the
linear relationship gn ~ —(@,); o) from (4).
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On the basis of this pre-assessment, we now look for second-order bound solutions
expressed by
n? = &G, (A,, cos(6, — 0,)) + By, sin(6, — 6,,))
+&°G/ (A} cos(6, + 6,,) + B, sin(6, + 6,,))

+e& Gz,,(Azn c0s 26, + By, sin26,) + ¢ sz(Azm c0s 260,, + By, sin26,,), (24)

nm

@? = ¢?F coshk,, (z+ h)(A,,, sin(6, —6,,) — B, cos(6, — 6,,))
+&?F," coshi (z+ h)(A) sin(6, +6,,) — B, cos(8, + 6,,))
+ &% F5, cosh 2k, (z + h)(Aa, sin 26, — B, cos 26,)

+ &2 Fy,, cosh 2k,,(z + h) (A, sin 26,, — Bo,, €05 26,,), (25)
where G, G\, Gy, Ga, F,,,, F,\, Fs,, F», are unknown transfer functions and
k., k. are unknown wavenumbers to be determined.

nm> nm

Inserting (25) into the Laplace equation (1) leads to the determination of the sum
(upper signs) and difference (lower signs) wavenumbers

oy = 1K % Kl =\ e e o (R Ky (26)

Again, the kinematic bottom condition (2) is automatically satisfied. Therefore we
concentrate on satisfying the nonlinear surface conditions, i.e. we insert (13)—(14)
and (24)7(25) into (9)—(12), which again are substituted into (7) and (8). Terms of
order O(g?) are collected and as a result we obtain algebraic equations for the

determination of G,,,, G/, Gy, Gom, F,,,, F,\, F5, and F,. The self-self interaction
solutions read
coth hk, 3 hoi,
Gay = thi,(2 + cosh 2hk,) ———, Fpy = —>——nt—| 27
2 = 2hkal )s1nh2 hk, ? 4 sinh* hk, @7

with equivalent expressions for G,, and F,,. These are the well-known second-
order solutions for monochromatic waves. The transfer functions for the sub- and
super-harmonic interactions are more involved and can be expressed by

G+ = 5nm‘AZ(a)Ina kn, Kns Wim, km7 Km, K;rm ) (28)
G;m - AZ(a)lrn knv Kny —W1im, _km5 Km Kn_m ) (29)
Fy;;q - 5an2(a)1na kn’ Kny Wim, kma Km, Kyj_m)ﬁ (30)
F,, = Dy (w1y, Kns Kny —@1ms =Koy K, K;m)a (31)
where
Sum = {% for n # m, (32)
5 forn=m.

The function A, used for the determination of G, and G, is defined by

nm

A2 (a)I}'H knv Kny Wim, km7 Km s K;rm)

gh

,Bnm (a)ln + wlm) cosh hK (wln (Ky%[ + kn : km) + W1im (Ky% + kn : km))
K 2 2 2 2

+ —"" sinh hKnm( kn : I'(m + 0y, 01, — a)lna)lm(a)ln + wlm) )v (33)

nm
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where
Bum = 201,01 (01, + w1) cosh it — gk sinh hic ), (34)

which is to be considered as a local variable. Similarly, the function I> used for the
determination of F;! and F,, is defined by

FZ (a)lna knv Kns W1m, kms Km s K:m)
h
= ,3 (a)lnwlm(a)ln + wlm)((wln + ('()lm)2 - wlnwlm))
hg’ 2 2
- ,3 (wln(Km +2kn'km) +a)1m(Kn +2kn'km))' (35)

For later use, we emphasize that according to (26), and (28)—(31) we have the following
second-order relations

KE =Kt

mn nm?

Gt =Gt , Ff =+4F*. (36)

nm? mn

Note that the second-order transfer functions for bichromatic bi-directional waves
defined by (28)—(31) with (33) and (35) are identical to the solution given by Sharma &
Dean (1981). Schiffer & Steenberg (2003) also gave this solution in connection with
the development of a second-order wavemaker theory for multi-directional waves.
Unfortunately, a typographical error appears in their formulation; the last term in
their equation (65) should be w? + w2 rather than w? + w2,

m

3.3. Third-order solution

In this section, we derive the new third-order solution for bi-directional bichromatic
waves. In this process, it is again convenient to start with a pre-assessment of the
third-order expressions by calculating (1/4)(n" 4+ 7®)? while collecting terms of order
3. This yields

&3 (Gom + 2GF (AL, cos(6, + 20,,) + B, sin(8, + 26,,))

m n2m n2m

+&*(Gam + 2G,, )(A5,, €086, — 26,,) + B, sin(6, — 26,,))

n2m
+ %Gy +2G) )(AS, cos(6,, + 26,) + B, sin(6,, + 26,))
+&3(Gay + 2G;,, (A5, €08(6,, — 26,) + B, sin(6,, — 26,))
+ 83G2,,(A3,, cos 36, + Bs, sin 36,)
+&3Gap(Asy cOs 36,, + By, sin 36,,)

+¢%(A, cosb, + B, sin6, + A,, cosb,, + B, sinb,,),
where the third-order amplitudes read

_ay (02 — bi) ¥ 2b,a,,b,, Bt — b, (a,i — b,zn) + 2a,a,,b,,

+ m
Aan - 2]12 ’ n2m — 2]12 ’ (37)
4 Gn (a2 —b2) F 2bnayb, Bt _ by (a? — b?) £ 2a,a,b, (38)
n ’ m2n ’
mzan 2h2 min 2h2
o (e —36)) g _ b (= b)) -
3n — Tv 3n — T ( )

The expressions for A;, and B;, are analogous to the expressions for A;, and Bj,,
while the expressions for A,, B,, A,, and B,, are omitted because they will not appear
in the bound third-order solution. Again this calculation defines the form (but not the
magnitude) of the third-order surface elevation. Having the form of n'¥, we establish
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the form (but not the magnitude) of the third-order velocity potential using the linear
relationship gn ~ —(&;),_¢) from (4).

On the basis of this pre-assessment, we now look for third-order bound solutions
expressed by

nd =e G:{zm(Aﬂm cos(6, + 26,,) + B, sin(6, + 26,,))
+&°G,,,, (A, €08(6, — 26,,) + B, sin(6, — 26,,))
+& Gm2n(Am2n cos(6,, + 26,) + B, sin(6,, + 26,))
+8°G (A5, €OS(6, — 26,) + B, sin(6,, — 26,))
+e G3n(A3n cos 36, + Bs, sin 36,)
+&3G3, (A3, cos 36, + Bs, sin 36,,), (40)
and
¥ =¢ F,:gm cosh i, (z + h)(AL, sin(8, + 26,,) — B, cos(6, + 26,,))
+&°F,, 2m coshk,,,(z + h)(Aan sin(6,, — 26,,) — ,,2,,, cos(6, —26,,))
+&Ft, coshih, (z 4+ h)(AL,, sin(6,, +26,) — B, cos(6,, +26,))
+&3F,,, coshi,,, (z + h)(A,,, sin(6,, — 26,) — B, cos(6,, — 26,))
+ &3 F;, cosh 3k, (z + h)(As, sin 30, — Bs, cos 39,,)
+ &3 F3,, cosh 3k, (z + h) (A3, sin 36,, — Bi,, cos 36,,)
+ &3 Fi3, cosh k,(z + h)(a, sin 6, — b, cos 6,)
+ & Fi3,, cosh k,(z + h)(ay, sin 6, — b, cosb,,), (41)
where anm, G;Zn’ G3,,, Gip, Fnzm, anzn, Fs,, Fsm, Fi3n, Fi3, are unknown transfer

functions and x5, , ¥, are unknown wavenumbers to be determined.
At third order, the phase functions (15) and (16) now incorporate the frequencies

w, = kn * U + 6()ln(l + 82603n), (42)
On = KU 4 01,(1 + 2 03,,), (43)
where w;, and ws, define the third-order amplitude dispersion, which is necessary

in order to remove secular terms from the expansion. In order to determine the
wavenumbers, we insert (41) into the Laplace equation (1) and obtain

am = 1K £ 2K = 1 (e £ b+ (Ray & 2k 2 (44)

Kizn = |km + 2kn| = \/(kmx + 2knx)2 + (kmy + 2kny)2' (45)

Again, the kinematic bottom condition (2) is automatically satisfied by (41). Therefore
we concentrate on satisfying the nonlinear surface conditions, i.e. we insert (13)—(14),
(24)—(25) and (40)—(41) into (9)—(12), which again are substituted into (7) and (8).
Terms of O(g?) are collected and as a result we obtain algebraic equations for the

determination of G,,, G, G, Gim, F5,, Foy,, F3, and F,. The self-self-self
interaction solutions read
Gn = "0 (14 4 15 cosh 2hk, + 6 cosh 4k, + cosh 6, (46)
n= = Ky Ky Kn),
: 128 sinh® ik,
1 h2 n®Wlin
Fs, = &(—11 + 2 cosh 2hk,), (47)

32 sinh’ hi,
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with equivalent expressions for Gs, and Fj,. These are the well-known Stokes
solutions for monochromatic waves. The transfer functions for the third-order sum-
and difference-interactions are more involved and can be expressed by the functions

G,sz = 8112m A3(w1n’ km Kny Wim, kma Km s K,va n2m’ G,Tm, ) (48)
G;zn = 8m2nA3(w1mv kWL? KWL’ a)lnv kn, KI‘L’ K;;na mzn’ G;‘,tn’ ) (49)
G;Zm = A3(a)1n9 kl‘l’ Kl‘lv _wlm’ _km9 Km9 Kn_m’ Kn2m’ nm? nm) (50)
1;2;1 = A*(a)lmv kvam»_a)lnv_kn’Kn’KI;annbn’ mn> ) (51)
Fn-;m = 8n2mF3(a)lna kna Kna Cl)lm, km7 Km7 K:ms ,12m’ Gnmv F‘n_';n) (52)
ijzn _8m2nr3(wlma kvaWlen’ kn7Kn7K;:;ns WLZV!’ G;,la F+) (53)
Fn_zm = 1_'3(601;1’ km Kns —W1m, _kmv K, Kn_m, anms nm? ) (54)
F;;:zn = F3(w1m’ km’ Kms —®1n, _knv Kn, K,;ny K,;zna mn? mn) (55)
where
_ |1 forn#m,
8n2m - 8m2n - {;’ fOI' n=m. (56)
The function A; used for the determination of G5, and Gi.,, is defined by
A3(w1n7 knv Knv a)lmy km7 KWH K:ma n2m’ G;I'_m’ nm)
Gr-:_m 3
= ﬂ (gh (2K + k k )an2m - ha)imVan)
n2m
F+
— 2 (cosh !, (hwimtuom (265 + Ky + 3Ky =Ky ) + 8hYiom (ki + Ku *Kyn))
n2m
- hwlm (za)lm + wln) yanK;n sinh hK;rm)
hzan2m
4ﬁn21n ( @im (4K + 2k k ) + @1 D1 (K'% + 2k” ‘ km))
o, (2 + cosh2hk,,
2 ( : . )g2 2 ( —|-2k -k )
4w1mw1nﬂn2m sinh th
h?a,», cosh 2hk 3gh*V,om cosh 2hk
n2m m 6K2 + 3kn . km a)2 + n2m ma)Q kn . km
4,Bn2m Sinh4 th ( " ) tm 4w1nﬂn2m Sinh4 th tm
ghzyrﬂm 2 2
— ST (260 — 2Ky K ) @1, + (26 4 k) @1mo1n + (265, — 2K, 0 Ky) ©F,)
4(1)11113112141
BTV (12 (3 4 Gosh i) + 6wnm (2 + 1), (57)
4w1,, Bpam SInh” hi,,
which incorporates the local variables
Buom = 0im((2wim + w1,)* cosh hit, — ganm sinh ik, ), (58)
Uom = (201, + @1,) COsSh ikl . Yaam = K5, sinh hich, . (59)

Similarly, the function I, used for the determination of F35, and Fy,,, is defined by

m2n>
+ + +
F3(w1nv kn’ Kn, wlm,kmﬁKm?Knm’ n2m’Gnm’an)

+
= — g”’" (hg2 (2/<,,21 +Kk,- km) — hsi, Qwi, + a)ln))
n2m

+
+ Foy ghcoshhi,, (wim(k,},)* + Boim + o) (kg + K+ Kin))

n2m
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Ft . 3gh2 Qi + o )
" Rt @im (201, + @1,) sinh b, + m m n
ﬂn2m nm®1 ( 1 1 ) nm 2ﬁn2m sinh2 th
gh? s . i 2
o fin (01, Goim + wia) (Ka ki — k) + 201, (010 + ©1m) (K * K — 1))
gh*c2 (24 cosh2hk,) , 5 , .
_ m - 2kn-km+Kn —a)n2a)m+wn
4013y ®1 Brom SIND? Tk, (¢ ) — o, Qo n))
_ 3gh’wi,, cosh 2hic,

20)1 ,3 5 sinh4 hic ((wln + a)lm) kn ° km + wan,i) . (60)

The third-order correction to the first-order potential (necessary to remove secular
terms) is determined by

—13 + 24 cosh 2h«k, + cosh 4hk
Fisn = w1k . ") 4 e M, 61
. ' ( 64 sinh® h, ) . (61)
—13 + 24 cosh 2h«,, + cosh 4hk
Fizm = C201mknm = “) 4 aVi3ms 62
13m = Em 1 < 64 sinh® hi,, ) "o (02
where
T13n = T(a)ln’ kn’ Kns Dim, kmv Km, Knims G:Trmv F;;Trzn)’ (63)
Tl3m = T(a)IWH km’ KWH wlna kn7 KVH K%n’ G,%n’ Fn%n)v (64)
and where
T(wlm kns Kny W1im, knu Km» Knima G}m’ Fni;n)
_ 8 2 2
= m - — 01, Ky * K
4w, w1,, cosh hk, (a)1 (K" K’”) @1 )
(G, + G 2 3
nm nm kn . km "
4hw? wy, cosh hk, (s + @inon)
1 . .
— M(Frjr_nk‘:—m Slnh hK;_m + Fn_mKn_m Slnh hKn_m)
F gcoshhi?t
nm nm ; ” kn . km 2\ m +\2
4hw? w, cosh hk, ((w1 +ow) ( + Km) Ot (Ko )
F—~ gcoshhk_
8 = ((a)ln - wlm) (kn : km - K,i) - wlm(Kn_m)z) . (65)

4hw? wy, cosh hk,

Finally, the third-order correction to the frequency (necessary to remove secular
terms) reads

8 4+ cosh 4hk
2,2 n 2.2
Wi =Cky \ —— -~ 4, + Cmeann 66
} ( 16 sinh* Ak, ) (66)
8 + cosh 4hk,
2 2 m 2 2
m = Cp, ——— | .k, 2mn, 67
@3 Cmk ( 16 sinh* Ak, ) s (67)

where

2 £ At oot
Kmﬂnm = -Q(wlm kn’ Kns WD1ms km7 Kms K s Gn_m? Fn_m)’ (68)

K22un = 2(01m» Kins Kims ©105 K, kny k5 GE L FE ), (69)

mn? mn?
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and

+
Q(a)lnv kannvwlmskmsKm7 nm’G 7)

(2w}, + o1,) gk, -k w?
= #kn ° km oo m o m
( 4a)1,,a)1m + + (G + Gnm) <4ha)1,,a)1m 4gh)

wl”(FJr kb sinhhiet + F ik sinh hi

nm nm nm nm--nm nm)

FJr cosh hk

W (( @in = wlm) (K’%1 + k” ‘ km) + wlm(’(;m)z)
F, coshhk,,
+ W ((a)ln + a)lm) (Kr?/l - kn . k ) a)lm(Knm) ) (70)

This completes the third-order theory, which provides explicit expressions for the
surface elevation, the amplitude dispersion and the vertical variation of the velocity
potential for bichromatic bi-directional water waves in finite depth (expressed in terms
of the mean water depth /). Note, that in order to use the theory for wave generation
in various numerical models, additional expressions for the velocity potential at the
free surface are required (see Appendix).

3.4. The time-averaged volume flux
The time-averaged volume flux vector is defined by

0 n
M E/ v¢dz+/ Vodz, (71)
0

—h

where V is the horizontal gradient operator, while the overbar represents the time-
averaging process. Consistent with (9)—(12), we evaluate the second integral in (71)
by using Taylor series expansions from z = 0, i.e.

n n 82¢
/ V@dz:/ V<q>—|—§—|—2§2 ) de. (72)
0 0 z=0

By substituting the expressions for @V, @@ @G and M, n® 1 into (72) and (71),
we obtain the result

o 2
= hU+¢? ( 5 cothh/c,,) K, + &> (C’Zwlm cothh/cm) K, + 0.  (73)
Ky Km

Under certain conditions, e.g. in closed wave tanks, M will be zero, and in this case
(73) can be used to determine the resulting return current, which becomes

2 2
U=—¢2 <C2;01" coth h/(,,) k, — &2 (szhal)(m coth h/cm) K. (74)

Kn

3.5. Identification and removal of singularities

For certain combinations of wavenumbers and wave angles, singularities appear in
the transfer functions G,,,,, F,, and G,,,, F,,,. Similar problems were discussed
by Roberts (1983) in connection with monochromatic short-crested waves in infinite
depth. The singularities originate from the division by f,,, defined in (58) and can
be traced to roots in the functions
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(G Fyom): 8Ky tanh hic, — (@1, — 2w1,,)* =0, (75)
(GmZm mZn) 8K man tanh hKr;2n - (Cl)lm - 2a)1n)2 =0, (76)
where «,,,, and «,,, are defined in (44) and (45). We note that w;, — 2wy, and

wim — 2wy, represent the frequencies of the bound waves with wavenumbers «;,,
and «,,,, and that (75) and (76) actually express the mismatches between bound
and free wavenumbers in a quartet interaction. Owing to harmonic resonance, these
mismatches may go to zero for certain combinations of wavenumbers and wave angles.

In order to analyse (75) and (76), we define the interacting wavenumber vector

components by

ke =k (1 + p)sing, k,, =« (1 + p)cosy,
kpy =k (1 —p)sing, ky,y,= —« (1 —p)cose,

ie. ¢ — 90° corresponds to the collinear limit, while ¢ — 0° corresponds to the
colliding limit. The roots ¢, of (75) and (76) are, respectively, shown in figures 1(a)
and 1(b) as functions of p for discrete values of hx. In general, we notice that ¢, — 90°
as p — 0, in agreement with the monochromatic case considered by Roberts (1983).
The roots of (75) occur for p < 0.4 and are confined to a narrow region 84° < ¢, < 90°,
which shrinks for decreasing values of hk. In contrast, the roots of (76) cover the
complete interval 0° < ¢, < 90°. In deep water, they occur only for p <0.6. As the
depth is decreased, this gradually reduces to p < 0.5 (with ik =1.2), before ultimately
growing to encompass the full range of p in shallow water.

Alternatively, we may determine the roots p, of (75) and (76) for given wave angles
¢. Based on figures 1(a,b) we can conclude that (76) will always have one root p, |,
while (75) will have either two roots p,; and p,, (for 84° < ¢ < 90°) or zero roots. It
turns out that the singularities are simple poles, and we can generally remove these
poles from a function G by using

b, .
_E — 7 p;= lim —pr.;)G}, 77
j (p - pr.,j) ! p_’p'-f{(p P j) } ( )

where the tilde indicates the function after removal of the singularity. By the use of
(77) it is straightforward to obtain reliable results for the transfer functions G,5,,, F,5,
and G,,,,, F,,- As an example, Figure 1(c) shows the variation of G,,, and szn
as a function of p for the case of ¢ =40° and «h =1.2. We notice that the function

G, has a smooth behaviour near the original singularity and that it resembles the
variation of G

m2n*

3.6. Bichromatic short-crested wave example

We illustrate the third-order solution by considering the following case of
bichromatic short-crested waves in a depth #=10m: w, =21 x0.15s7!, a,=1.3m,
0, =10°, , =21 x 0.10s7!, a,, =1.0m, ¢, = — 10° where Kk, = k,(cos ¢,, sinp,) and
K., = kn(COS @, Sin @, ). Figure 2(a) shows a perspective view of the third-order surface
elevation. With angles so close to the collinear limit, the wave pattern actually becomes
rather long crested, but nevertheless the surface shape is much more rounded than the
equivalent monochromatic long-crested case. Figure 2(b) shows the first- and third-
order surface elevations along the centreline (i.e. y=0), while figure 2(c) shows the
first- and third-order velocity profiles at the centrepoint (x, y) = (0, 0). The relevant
coefficients corresponding to figures 2(a)(c) are given in table 1 to aid in checking
implementation of the theory.
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FIGURE 1. Identification and removal of singularities in the sub-harmonic transfer functions.
(a) Roots ¢, of (75) as function of p. (b) Roots ¢, of (76) as function of p. (¢) Sub- and
super-harmonic transfer functions for the case of ¢ =40° and kh =1.2. (i) G, ,, (sub-harmonic);
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FIGURE 2. Third-order solution for a bichromatic short-crested wave in finite depth.
Specifications: h =10m, a, =1.3m, a,, = 1.0m, w, =21 x 0.155"!, w,, =21 x0.10s7!, ¢, = 10°,
om =—10°, K, =K, (cos @,, sin @,), K,, = k,,(cos @,,, sin ¢,,). (@) Perspective plot of the third-order
surface elevation. (b) Surface elevation along the centreline (y =0): first-order theory (dashed
line); Third-order theory (full line). (c¢) Velocity profile at the centre point (x,y)=(0,0):
first-order theory (i); third-order theory (iii).
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Surface elevation Velocity potential Wavenumbers
®1n 0.9127 F, —6.5784 Kn 0.10737
O1m 0.6049 F, —13.2958 K 0.06514
G —1.4060 F,. 32.3669 K 0.05125
G\ 3.1320 F —6.4505 Kb 0.17004
G 2.5773 F, —2.4552
Gam 4.6356 Fon, —19.0648
Goom —2.0753 Fn —65.718 Ko 0.04703
Gbh, 17.6333 Fh —8.0446 K5 0.23407

n —4.8946 F5, —14.8841 Kpom 0.15513
G, 12.8636 Fh, —1.9582 K 0.27684
Gi, 3.5572 Fs, —0.1182
Gin 9.3713 Fsm —10.705
Fi3, 0.1584
Fisn 0.4267

TaBLE 1. Third-order bichromatic short-crested wave in finite depth. Coefficients for the
solution shown in figure 2.

4. The nonlinear dispersion relation for bichromatic interactions
4.1. Generalization of the dispersion relation

One of the key results of the new theory is the third-order amplitude dispersion for
interacting bichromatic bi-directional waves in finite depth. This is given by (42) with
ws, defined by (66). It is straightforward to generalize this result to more than two
interacting waves, in which case we obtain

8 + cosh 4hk
w,; = kn -U +w n 1 + Cil(,% <n> + CiK,%,Qnm ’ 78
: ( 16 sinh? ik, ; (78)

where wy, is given by (19), ¢, and c,, are defined by (17), and £2,,, is given by (68)—(70).
In the special case of zero net volume flux, the return current is determined by

c2a)1 02 w1
=— | 22 cothh k, — m" " cothh K. 7
] <2h/<,, cot Kn> " Z ( e, cot /<m> m (79)

m#n

These expressions, which are given in terms of the mean water depth 4, allow for an
assessment of the amplitude dispersion in several interacting waves, an issue which
we will pursue in §5 in connection with resonance conditions for finite-amplitude
carrier waves and in § 6 in connection with nonlinear Bragg scattering.

Figure 3 shows the variation of the amplitude dispersion function £2,,, as a function
of hk, and hk,, covering the range from shallow water to three times the conventional
deep-water limit. Two different bichromatic interactions are considered: collinear
interaction in figure 3(a) and a short-crested interaction with wave angles ¢, = 30°
and ¢,, =—30° in figure 3(b). In both cases, we notice that the largest values of
2, (ie. the largest influence on w,) occur when h«,, < hk,, i.e. longer waves have a
stronger influence on shorter waves than vice versa.
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FiGure 3. The amplitude dispersion function £2,,, for bi-chromatic short-crested interactions
as a function of wavenumbers hk, and hk,. Definition of wavenumber vectors:
K, = kn(cos @, sing,), K, =k,(cosg,, sing,). (a) Collinear interaction, ie. ¢, =0° ¢, =0°.
(b) Short-crested interaction with ¢, =30°, ¢,, =—30°.

4.2. Bichromatic short-crested interactions in infinite depth

Longuet-Higgins & Phillips (1962) were the first to calculate the change in phase
speed of one train of gravity waves in the presence of another in infinite depth. A
misprint in their solution was later corrected by Hogan et al. (1988), who extended
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their solution to cover gravity-capillary waves in infinite depth. This extension was
based on Zakharov’s (1968) equation and it was given in terms of the Zakharov
kernel T(ky, Ky, k3, K4). For gravity waves (no current) the solution by Hogan et al.
can be expressed by

2n? A w1,y
W, = O1, (1 + cli? <K3T1111) +cii? < 3 ! T1212>) , (30)

n m®ln

where T = T(kl, kl, kl, kl) and Thin = T(kl, kz, kl, kz), while W1y and WD1m here
represent the infinite-depth limits of (19).

Unfortunately, it turns out that the determination of Ty;1; and Ti,1; requires a limit-
ing process, where the identical wavenumber vectors must be perturbed slightly, i.e.

T = \51i\m0 T(Ky + 81, Ky + 82, ki + 83, Ky + 84), (81)
T = \sli\mo T(Ky + 81, ki + 82, ki + 83, ki + 84). (82)

According to Janssen & Onorato (2005), the perturbation vectors should generally
satisfy the resonance condition of the Zakharov equation, i.e.

81+ 38, =83+ 4. (83)

In infinite depth, the outcome of the limiting process does not depend on the
directions of the perturbation vectors (see e.g. Zakharov 1999), and the limit can be
determined numerically or analytically. Zakharov (1999) gave an analytical result,
which unfortunately includes some misprints. Hogan et al. (1988) found that (80) is
in agreement with the corrected explicit expression by Longuet-Higgins & Phillips
(1962).

For the case of collinear waves in infinite depth, (80) simplifies to

on = i 1+ 4 + e (£2). 4

m

where
2= for K > Kpy, A= @i for K < K-
D1m Win
This expression has been given by, for example, Zakharov (1999) and Zhang & Chen
(1999).

We note that the self—self interaction term in (84) obviously agrees with the deep-
water limit of the similar term in (78). We shall therefore concentrate on a comparison
between the infinite-depth expression Ak, /k, and the finite-depth expression defined
by £2,... Figure 4 shows the percentage difference between the two in the deep-water
regime as a function of h«, and hk,, ranging from 3 to 9. We notice that discrepancies
show up in a band along the diagonal, i.e. when &k, and h«,, have similar magnitudes.
The explanation is as follows. In the derivation of (84), it has been assumed that
w1, — \/@, w1, — /gk, and that tanh(h(x, + «,)) — 1. This means that all
interactions, including all possible sum and difference wavenumbers are assumed to
take place in infinite depth. This assumption is generally not valid in practice, and
explains why inaccuracies show up in a band along the diagonal in figure 4, where
k, and k,, are of similar magnitude. Surprisingly, this limitation in the infinite-depth
theories of Longuet-Higgins & Phillips (1962), Hogan et al. (1988), Zakharov (1999)
and Zhang & Chen (1999) has not previously been discussed, and in order to avoid
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FIGURE 4. The percentage difference between £2,,,, defined by (68)—(70) for finite depth and
Ak, [k, defined by (84) for infinite depth. Collinear interactions.

potential inaccuracies, for example, in the description of irregular wavetrains, we
recommend using the new finite-depth formulation under all circumstances.

4.3. Bichromatic short-crested interactions in finite depth

Finite-depth expressions for the Zakharov kernels T'(ki, ks, k3, k4) were given by,
for example, Stiassnie & Shemer (1984); however, Agnon (1993), to our knowledge,
was the first to consider the nonlinear dispersion relation in mutually interacting
wavetrains in finite depth. His expression has the same form as (80), but with kernels
modified to a finite depth. Unfortunately, he did not address the problem of evaluating
Ti111 and Typpn through the limiting process shown in (81)—(83), which is a non-trivial
task. We have attempted to evaluate Agnon’s expressions in finite depth, but have not
been able to make these agree with (78). Apparently, the problem is that the Zakharov
kernel function does not have a unique limit in finite depth, and the result depends
on the direction of the perturbation vectors §;. So far only Janssen & Onorato (2005)
have addressed this problem, and only for the case of monochromatic unidirectional
waves in finite depth. The new theory provided in this paper may serve as a reference
for future work on the application of Zakharov equations in finite depth.

4.4. Monochromatic short-crested interactions

When the frequencies and the amplitudes of the interacting wavetrains are identical,
the present theory simplifies to the case of monochromatic short-crested waves.
In this case, we may use w,=w,, knx=ku, kpwy= — k,y and a,=a,=a/2,
b, =b,=0. With this choice, the first-order phase functions in (13) simplify to
On = (wpt —knx —kyyy) and 6,, = (w,t —k,.x +k,yy); the second-order phase functions
in (24) simplify to 6, +6,, = 2w,t =2k, x), 6, =0 = (2kyyx), 26, = 2w, t — 2k, x —2k,y y)
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FIGURE 5. The amplitude dispersion function £2,, for monochromatic short-crested inter-
actions as a function of wavenumber ik and wave angle . Definition of wavenumber vectors:
k, =k(sin g, cos ), k,, =« (sin ¢, — cos ¢).

and 26, = (2w,t — 2k,xx + 2k,,y); while the third-order phase functions in (40)
simplify to 6, + 26,, = Bw,t — 3k x + kyyy), 6, — 26, = (wnt — kyxx + 3kuyy), 260, +
On = (3(,(),1[ — 3k x _knyy)a 20, — 6, = (wnt — kK x — 3knyy)’ 30, = (3(,(),1[ — 3k x — 3knyy)
and 36,, = (3w,t — 3kux + 3k,yy). It is straighforward to show that the present
theory simplifies to the third-order solution by Hsu et al. (1979), except for the
following discrepancy. While we have chosen to eliminate third-order secular terms
by adding the Fi;,-term to the velocity potential, Hsu et al. used an alternative,
but equivalent, adjustment of the surface elevation (the by; term in their equation
(58)). This is a free choice and both formulations are consistent steady third-order
solutions.

The monochromatic short-crested case may conveniently be defined by the
wavenumber vectors K, =«(sing, cosg) and Kk, =«(sing, —cos¢). Now $£2,, can
be plotted as a function of hx and ¢, as shown in figure 5 for hx ranging from
shallow water to deep water. Note that for ¢ > 45° the angle between the receiving
wave and the interacting wave is less than 90° and in this case the interacting wave
will have a component which is in the direction of the receiving wave. This results in
a positive value of £2,,,. For ¢ =45°, the two waves cross each other at right angles
and consequently £2,,, — 0. For ¢ <45°, the interacting wave will have a component
in the opposite direction of the receiving wave, which leads to negative values of £2,,,.

Roberts (1983) computed a twenty-seventh-order perturbation solution to mono-
chromatic short-crested waves in infinite depth. A comparison with his solution makes
it possible to quantify the applicability of the third-order theory to finite-amplitude
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FIGURE 6. The nonlinear frequency of a short-crested wave as a function of the wave steepness
squared. (a) Wave angles ¢ covering the interval from 0° to 80°. Third-order theory is shown
as full lines. Dashed lines are from the twenty-seventh-order solution by Roberts (1983), his
figure 5. (b) The unidirectional case of ¢ =90°. (i) Third-order theory for a single wave;
(ii) the limit of third-order short-crested theory. Dashed line based on Cokelet (1977).

waves. Again we define the wavenumber vectors as shown above, ie. ¢=0°
corresponds to purely standing waves and ¢ = 90° corresponds to collinear progressive
waves. We use U =0 and ¢, =c,, =a/2, hence (78) simplifies to

8 h4h
W, = Wi, <1+iK2az <Qnm+ + cos K>>

16 sinh* ik

Figure 6(a) shows the relative nonlinear frequency w,/w;, as a function of the wave
steepness squared («2a?) for a variety of angles ¢. The third-order theory is shown
as bold straight lines, while the high-order solution by Roberts (1983) is shown as
dashed lines. For midrange values of ¢, the surface elevation has a pyramidal shape,
which is associated with relatively large maximum amplitudes, and in this range, the
third-order theory is seen to be fairly accurate for xa as high as 0.6. Discrepancies
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rapidly increase for 75° < ¢ < 90°, in which case the surface shapes start to become
long-crested.

Figure 6(b) shows w, /w1, in the collinear limit of ¢ =90°. In this case the dashed
line represents the solution by Cokelet (1977), while the third-order theory has
been applied in two different ways: (i) accounting for the third-order single-wave
theory for a progressive wave with steepness xa, and in this case the agreement
with Cokelet (1977) is extraordinarily good; (ii) accounting for the third-order short-
crested solution, which consists of two identical components each with steepness xa /2.
Obviously, the short-crested solution does not converge towards the monochromatic
single-wave solution for ¢ — 90° and instead of a slope of 1/2 x2a?, it leads to a slope
of 3/8 «?a?, significantly underestimating the effect of the amplitude dispersion. This
problem of grazing angles was treated by Roberts & Peregrine (1983), who derived a
special ‘near-field” solution under the assumption that the derivatives in the direction
along the crest (the y-direction) are small compared with those in the direction
of propagation (the x-direction). As a consequence, the sinusoidal functions in the
y-direction were replaced by Jacobian elliptic functions, and the resulting nonlinear
frequency was expressed by

1 1 2
o= o1+ R2), 2= (1 +— - n) ,

with K(m) being the complete elliptic integral of the first kind. In terms of nonlinear
dispersion, this expression is able to bridge the gap between the unidirectional Stokes
solution and the monochromatic short-crested solution as £2. approaches 1/2 for
m — 1 and 3/8 for m — 0.

We emphasize that the general bichromatic short-crested solution does not have a
similar problem with grazing angles. First of all, the nonlinear dispersion relation (78)
has a continous transition from the grazing short-crested case to the collinear case
(as long as the interacting frequencies are different). Secondly, the surface pattern in
the grazing short-crested case is significantly more rounded for bichromatic waves
than for monochromatic waves (see figure 2), which means that there is less need
for a special treatment of y-derivatives versus x-derivatives. Thirdly, the bichromatic
short-crested solution does not have a singularity at ¢ =90°, and therefore there will
be no abrupt transition to the collinear case. As shown in figure 1(a, b) singularities
do appear, but at other angles, and they can be removed as discussed in §3.5.

5. Resonance conditions for finite-amplitude carrier waves and their
three-dimensional perturbations

In this section, we use the new third-order theory to evaluate the resonance
conditions for the interaction of finite-amplitude waves and infinitesimal three-
dimensional perturbations of arbitrary wavelength. In this connection, we shall
demonstrate the importance of amplitude dispersion for the location of the resonance
curves. The dominant instabilities can obviously not be detected by the present theory,
and for this purpose we involve the stability method presented by McLean (1982).

McLean considered the stability of finite-amplitude unidirectional waves to three-
dimensional perturbations. At first, he expressed the fully nonlinear governing
equations in a frame of reference moving with the steady two-dimensional carrier
wave. Next, the three-dimensional infinitesimal perturbations were superimposed on
the steady wave, and the governing equations were linearized with respect to the
perturbations with boundary conditions satisfied on the unperturbed free surface. For
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FIGURE 7. Resonance curves of class I for unidirectional carrier waves (ie. ¢ =90°).
Third-order dispersion relation: (i) ka =0.0; (ii) ka =0.1; (iii)) ka=0.2; (iv) xa =0.3. Points
correspond to dominant instabilities from the method of McLean (1982): &, ka=0.1; A,
ka=0.2; %, ka=0.3.

a given set of wavenumber vectors, this procedure leads to an eigenvalue problem for
the non-dimensional frequency (o) of the perturbations, and instabilities correspond
to Im{o } > 0. We have implemented this method in order to make additional examples
which were not given by McLean.

McLean considered two types of instability, which are defined by the resonance
conditions

k1 + k2 — 2k0 = 0, w; +w; — 2600 = 0, class I, (85)
k1 + k2 — 3k0 = 0, w; +wy; — 3(1)0 = O, class II, (86)

where Ko represents the finite-amplitude carrier wave, while k; and k, represent the
perturbations. With the choice of ky=(k, 0), these conditions can be satisfied with
perturbations described by

ki=(04+p,qg)x, ki=(1—p,—q), class], (87)
ki=(+p,qx, ka=(2—p,—qk, classIL (88)

Note that wp, w; and w, are the angular frequencies corresponding to the
wavenumber vectors Kg, K; and k,. While it is common to assume that the frequencies
involved in the resonance conditions satisfy the linear dispersion relation (see e.g.
Phillips 1960; Longuet-Higgins & Phillips 1961; Hogan et al. 1988; Liu & Yue 1998),
we emphasize that it is generally necessary to include amplitude dispersion in order to
fully satisfy these conditions. As the perturbations are assumed to have infinitesimal
wave heights, they cannot influence the angular frequency of the carrier wave wy,
which is only influenced by self-self interaction. In contrast, the angular frequencies
of the perturbations w; and w, will be strongly influenced by the wave height of the
carrier wave, while they will experience no self—self interaction. These effects can be
estimated easily using (78) and as a result we can determine the (p, ¢g) values which
satisfy the nonlinear frequency conditions in (85) and (86) for a given value of «a,
where a is the amplitude of the carrier wave.

In the following examples, we consider the case of xh =2m. Figure 7 shows the
class I resonance curves obtained by solving (85) for four different values of xa. The
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FiGure 8. Third-order resonance curve of class I for unidirectional carrier waves (i.e. ¢ = 90°)
with ¢ =0. Points correspond to dominant instabilities determined by the method of McLean
(1982).
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FIGURE 9. Resonance curves of class II for unidirectional carrier waves (i.e. ¢ =90°).
Third-order dispersion relation: (i) xa=0.0; (ii)) ka=0.2; (iii)) ka =0.3. Points correspond
to dominant instabilities determined by the method of McLean (1982): A, xa=0.2; %,
ka=0.3.

nonlinearity obviously plays an important role in the location of these curves. By
using the fully nonlinear method of McLean, we can determine the position of the
dominant instabilities. They all occur for ¢ =0, and the points are seen to be close to
the respective third-order resonance curves. A closer inspection of class I resonance
with ¢ =0 is made in figure 8 which shows the variation of p as a function of «a.
Again the third-order solution is in fairly good agreement with the McLean analysis,
at least for ka < 0.15. Figure 9 shows the class II resonance curves obtained by solving
(86) for three different values of xa. The data points obtained from the method of
McLean are in close agreement with the third-order curves. A closer inspection of
class II resonance with p=0.5 is made in figure 10 which shows the variation of ¢
as a function of ka. This leads to the so-called L2 crescent wave formations (see e.g.
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FiGgure 10. Third-order resonance curve of class IT for unidirectional carrier waves (i.e. ¢ =90°)
with p =0.5. Points correspond to dominant instabilities determined by the method of McLean
(1982).

Fuhrman, Madsen & Bingham 2004), and again the agreement with the method of
McLean is very good for ka < 0.25.

6. Resonance conditions for Bragg scattering over an undular sea bed

Water waves travelling over an undular sea bottom are exposed to Bragg scattering,
which typically results in partial reflection of the incoming wavetrain. The interaction
of the surface waves and the bottom ripples is in many ways analogous to the
mechanism of nonlinear wave-wave interaction for surface waves, and resonance
conditions are obtained simply by adding the stationary bottom ripple wavenumbers
to the resonance condition for the surface waves. Three different types of Bragg
scattering have been discussed in the literature with resonance conditions given by

ki £ ky =K =0, w; tw; =0, class I (89)
ki tky+ Ky + Ky =0, w1 +wy =0, class 11 (90)
kitkyt kit K=0, w1+ w w3 =0, class 111 (91)

where K ; are the bottom wavenumber vectors, k; are the surface wavenumber vectors
and w; are the corresponding angular frequencies. Classes I and II have both been
studied extensively in the literature and can both be treated by linear wave theory.
In contrast, class I1II Bragg scattering involves nonlinear wave interaction and is a
relatively new phenomenon, first discussed and analysed by Liu & Yue (1998). It
defines a quartet interaction involving one ripple wavenumber vector K and three
surface wavenumber vectors ki, k, (both being incoming waves) and K; (the scattered
wave). As a special feature, the scatter arising from class III may result in either a
reflected wave or a transmitted wave depending on the interacting wavenumbers.

In the following we shall concentrate on class III and apply the new third-
order theory to determine the resonance curves. We consider normal incidence and
assume that the two incoming waves are identical, i.e. Ky =k; =(k1,0), k3 =(«3,0)
and K = (K, 0). In this case, (91) leads to two possible resonance conditions

k3 =2k — K, w3 = 2wy, reflection (class I11), (92)
k3 =2k + K, w3 = 2wy, transmission (class III). (93)
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FiGURE 11. Downshift/upshift of the location of class III Bragg reflection/transmission
as a function of incoming wave steepness kic;. The shift is defined as the ratio of the
nonlinear resonance wavenumber «; to the linear resonance wavenumber ;. Specifications:
K =2.642m™! and h=1.0m. —, theoretical solutions for c¢3/c; =0.0 and c3/c; =0.5; @,
numerical results from Madsen et al. (2006).

In both cases, the scattered wave will occur at a frequency twice that of the incoming
wave. In order to predict the location of the resonance, Liu & Yue invoked the linear
dispersion relations

w1 = v/ gk tanh ik, w3 = v/ gk3 tanh ksh, (94)

which were solved in combination with (92)—(93) to determine «; and «3 for given A
and K. As an example, they considered K =2.642m~! and 4 = 1.0m, which leads to
resonant reflection at «3 =0.546K for an incident wavenumber of x; =0.227K, and
resonant transmission at «3 =2.195K for an incident wavenumber of «; =0.598K.
While these estimates are valid for infinitesimal incoming waves, they become
inaccurate for increasing nonlinearities. To improve this prediction, we replace (94)
by (78) using U =0. The combination of (92)-(93) and (78) now leads to the
determination of «x; and «3 for a given h, K, c¢; and c3;. Unfortunately, the amplitude
c3 of the scattered wave is unknown until actual Bragg scatter computations have
been made, but typical values of c¢;3/c; fall in the interval from zero to 0.5 so these
two extremes will be considered. Again we consider the case of K =2.642m™~! and
h=1.0m, and calculate the resonating «; and «; as a function of the incoming wave
steepness «ici.

The results are presented in figure 11 as the ratio «y/xo;, Where ko; is the result
of applying the linear dispersion relations (94). With increasing nonlinearity we
notice a clear upshift/downshift for the case of transmission/reflection. Actually,
this trend can be seen in the numerical results by Liu & Yue (1998), although
no explanation was given. Additional computations of class III Bragg scatter have
recently been made by Madsen et al. (2006) and these results are included in figure 11.
We notice that for the case of reflection, the numerical results follow the prediction
corresponding to c¢3;/c; =0.5, whereas for the case of transmission they follow the
prediction corresponding to c¢3/c; =0. The explanation is the following. In the case of
transmission, the incoming waves upstream of the ripple patch will not be influenced
by the scattered wave until after the patch, hence the resonance over the patch will
occur as if w; is not influenced by c; (i.e. as if c; is zero), while w; will be strongly
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influenced by c;. In the case of reflection, the incoming waves upstream of the patch
will (at least eventually) be influenced by the reflected waves, and in this case w; and
w3 will both be influenced by mutual interactions corresponding to the actual wave
amplitudes ¢; and c;.

7. Concluding remarks

In this work, we have derived a new third-order perturbation solution for bi-
directional bichromatic water waves in finite depth. The solution is an extension
of Sharma & Dean (1981) from second-order to third-order, it is an extension of
Hsu et al. (1979) from monochromatic to bichromatic short-crested waves, and it is
an extension of Zhang & Chen (1999) from collinear interactions in infinite depth to
bi-directional interactions in finite depth. The solution includes explicit expressions
for the surface elevation and the vertical variation of the velocity potential, which
is important for the determination of forces on sea walls and breakwaters. We also
explicitly provide the velocity potential at the free surface (Appendix), which is useful
for wavemaking in numerical models. Last but not least, the nonlinear dispersion
relation is generalized to account for many interacting wave components with different
frequencies and amplitudes. This allows for an easy assessment of the phase velocity
of each of the wave components influenced by the presence of numerous others. All
expressions unambiguously include the effect of an ambient current, with the option
of specifying zero net volume flux.

The theory is derived and presented in §§ 3.1-3.3, while the resulting depth-averaged
and time-averaged volume flux is determined in §3.4. Section 3.5 includes the
identification and removal of singularities in the third-order transfer functions. In
contrast to the case of monochromatic short-crested waves, where singularities are
located at the collinear limit, they can be found for any angle in the bichromatic case
(see figure 1). A simple example of a bichromatic short-crested wave at a grazing
angle is computed in §3.6 (figure 2 and table 1). We emphasize that the surface
shapes turn out to be much more rounded than the similar monochromatic case, and
that there is no problem with the transition from the short-crested solution to the
collinear solution as long as the frequencies are different. This is also in contrast to the
monochromatic grazing angle case, which called for special treatment by Roberts &
Peregrine (1983).

The nonlinear dispersion relation is discussed in detail in §4. In §4.1, we generalize
the new expression to account for many interacting wave components with different
frequencies and amplitudes, including the effect of a possible ambient current. Figure 3
shows the amplitude dispersion as a function of the interacting wavenumbers for
collinear waves and for waves at an angle of 4+ 30°. In 4.2, we dicuss the infinite-depth
expressions given by, for example, Longuet-Higgins & Phillips (1962), Hogan et al.
(1988), Zakharov (1999) and Zhang & Chen (1999). We compare these expressions
to our new finite-depth formulation and show that inaccuracies occur whenever the
interacting wavenumbers are of similar magnitude (figure 4). The reason is that the
infinite-depth approximations implicitly assume that, for example, tanh h(x, —«,,) — 1,
that is, that all interactions (including all possible difference-frequencies) take place in
infinite depth. This assumption is generally not valid and in practice, this is a severe
limitation of, for example, the third-order irregular infinite-depth theory by Zhang &
Chen (1999). Instead, we recommend using the new finite-depth theory for all possible
wave—-wave interactions.
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In §4.3, we discuss the finite-depth Zakharov-type formulation by Agnon (1993).
We have not been able to make this formulation agree with our new perturbation
solution except at the deep-water limit. The reason is apparantly that the Zakharov
kernel function does not have a unique limit in finite depth, and that the result
depends on the direction of the infinitesimal vector in the limiting process. Janssen
& Onorato (2005) have addressed this problem for monochromatic waves in finite
depth, but so far the problem is unresolved for the more general case of bichromatic
bi-directional waves. We expect that the new theory provided in this paper may serve
as a reference for future work on the Zakharov formulation in finite depth.

In §4.4, we discuss the case of monochromatic short-crested waves in finite and
infinite depth. We show that in this case our theory simplifies to the theory of Hsu et
al. (1979). The amplitude dispersion is shown as a function of wavenumber and wave
angle in figure 5. The validity of the third-order theory is tested by comparing with
the high-order infinite-depth solution by Roberts (1983) in figure 6.

In §5, we demonstrate the usefulness of the nonlinear dispersion relation, by
computing third-order resonance curves for unidirectional carrier waves and their
three-dimensional infinitesimal perturbation satellites. The influence of nonlinearity
on these curves is demonstrated and the curves are compared to the location of the
dominant class I and class II wave instabilities determined by the numerical method
of McLean (1982) in figures 7 to 10.

In § 6, we compute third-order resonance curves for class 111 Bragg scattering, which
involves a nonlinear interaction between the incoming waves, the scattered waves and
the sea bottom undulation. This, for the first time, explains the downshift/upshift
of the resonating wavenumbers of the reflected/transmitted waves (figure 11), which
was previously observed by Liu & Yue (1998).

This work has been financed by the Danish Technical Research Council (STVF
Grant no. 9801635) and their support is greatly appreciated.

Appendix. The velocity potential at the free surface
The third-order velocity potential at the free surface for bi-directional bichromatic
waves is expressed as
d=U-x+ Un(a, sinb, — b, cosb,) + wy(a, siné,, —b,, cosb,,)
+ tan(Azy, SIn 26, — By, €05 26,,) + o (Azy sin 26, — B, c0s 26,,)
+wt (A sin(8, +6,,) — B, cos(6, + 6,,))
+u,,, (A, sin(6, —6,)— B, cos(6, —6,))
+ 3, (A3, sin 36, — Bs, cos 36,) + wam(Asy, sin 36,, — B, cos 36,,)
+ i3n(a, sin6, — b, cos6,) + i3, (a, sinb,, — b,, cosb,,)
+ b, (AL, sin(0, + 26,) — B, cos(6, + 26,,))

+ Uy (A SIN(6, — 20,,) — By, c08(6, — 26,,))
)l (AL, sin(6,, + 26,) — B, cos(6,, + 26,))

m2n m2n

+ Mo (A, SINB, — 26,) — B, cos(6, — 26,)),
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where
w1, coth hk, w1, coth hk,,
Hn = — ’ Hm = — —,
Kn K

I‘L}m = Fi cosh hK;Lm - %h(a)ln + a)lm)v

nm

3 cosh 2hk 3 cosh 2hk
n=_1hwn<4+n>7 mz_lhwm<4+m)a
2 47 sinh? Ak, 2 4 sinh? Kk,

i, w1, coth hk,

_— : 26 — 3 cosh 2hk, + 10 cosh 4hk, + 3 cosh 6hk,),
M3 128 sinh® Ak, ( )
h2 m®1m thh m
Ui = — K wl_ 0(6) K (26 — 3 cosh 2hk,, + 10 cosh 4hk,, + 3 cosh 6kk,,),
128 sinh” Ak,

nm- -nm nm nm- -nm

2
Uiz = ;—'}"l(F+ kb sinhhe! + F ik sinhhk, + w,(G) — G, )

L1, coth Ak, 7
+ Fi3, cosh hi, + Kn®1n COTH tlen <cﬁ (1 + coth? hk, — 2) — 4ci> ,
sinh” hk,

16
C2 . .
Ki3m = i Fl it sinhhi) + F, k. sinhhk, + wo,(GL — G, )
Km®1, coth hk 7
+ Fi3,, cosh hic,, + —2tm =22 T0m c2 (14 coth? hk,, — ———— | —4c ).
16 sinh” hk,,
hk,wy, coth hx h*k,, coth hi,,
Mfzm = - i . m 2 - (+5w1m - 2wln - (wln i wlm)COSh 2th)
4 4 sinh” hk,,
+h(FEkx sinhht Fw,,GE )+ F5 coshhis, |
h2k,,w1,, coth hk, h’k, coth hk, _
Mizn = - n “ 1 2 ! (+5a)1n - 26Ulm - (wlm i wln)COSh 2hKn)
4 4sinh” hk,
+h(FLxt sinhhet Fw,GE )+ anzn cosh h/c;—rz”.
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